Title: | Summary Tables and Plots for Statistical Models and Data: Beautiful, Customizable, and Publication-Ready |
---|---|
Description: | Create beautiful and customizable tables to summarize several statistical models side-by-side. Draw coefficient plots, multi-level cross-tabs, dataset summaries, balance tables (a.k.a. "Table 1s"), and correlation matrices. This package supports dozens of statistical models, and it can produce tables in HTML, LaTeX, Word, Markdown, PDF, PowerPoint, Excel, RTF, JPG, or PNG. Tables can easily be embedded in 'Rmarkdown' or 'knitr' dynamic documents. Details can be found in Arel-Bundock (2022) <doi:10.18637/jss.v103.i01>. |
Authors: | Vincent Arel-Bundock [aut, cre, cph] , Joachim Gassen [ctb] , Nathan Eastwood [ctb], Nick Huntington-Klein [ctb] , Moritz Schwarz [ctb] , Benjamin Elbers [ctb] (0000-0001-5392-3448), Grant McDermott [ctb] , Lukas Wallrich [ctb] |
Maintainer: | Vincent Arel-Bundock <[email protected]> |
License: | GPL-3 |
Version: | 2.2.0.4 |
Built: | 2024-11-21 01:28:31 UTC |
Source: | https://github.com/vincentarelbundock/modelsummary |
A convenience function which can be passed to the coef_rename
argument of
the modelsummary
function.
coef_rename( x, factor = TRUE, factor_name = TRUE, poly = TRUE, backticks = TRUE, titlecase = TRUE, underscore = TRUE, asis = TRUE )
coef_rename( x, factor = TRUE, factor_name = TRUE, poly = TRUE, backticks = TRUE, titlecase = TRUE, underscore = TRUE, asis = TRUE )
x |
character vector of term names to transform |
factor |
boolean remove the "factor()" label |
factor_name |
boolean remove the "factor()" label and the name of the variable |
poly |
boolean remove the "poly()" label and function arguments |
backticks |
boolean remove backticks |
titlecase |
boolean convert to title case |
underscore |
boolean replace underscores by spaces |
asis |
boolean remove the |
library(modelsummary) dat <- mtcars dat$horse_power <- dat$hp mod <- lm(mpg ~ horse_power + factor(cyl), dat) modelsummary(mod, coef_rename = coef_rename)
modelsummary
packagePersistent user settings for the modelsummary
package
config_modelsummary( factory_default, factory_latex, factory_html, factory_markdown, startup_message, reset = FALSE )
config_modelsummary( factory_default, factory_latex, factory_html, factory_markdown, startup_message, reset = FALSE )
factory_default |
Default output format: "tinytable", "kableExtra", "gt", "flextable", "huxtable", "DT", or "markdown" |
factory_latex |
Name of package used to generate LaTeX output when |
factory_html |
Name of package used to generate LaTeX output when |
factory_markdown |
Name of package used to generate LaTeX output when |
startup_message |
TRUE or FALSE to show warnings at startup |
reset |
TRUE to return to default settings. |
datasummary
can use any summary function which produces one numeric or
character value per variable. The examples section of this documentation
shows how to define custom summary functions.
modelsummary
also supplies several shortcut summary functions which can be used in datasummary()
formulas: Min, Max, Mean, Median, Var, SD, NPercent, NUnique, Ncol, P0, P25, P50, P75, P100.
See the Details and Examples sections below, and the vignettes on the modelsummary
website:
https://modelsummary.com/
https://modelsummary.com/articles/datasummary.html
datasummary( formula, data, output = "default", fmt = 2, title = NULL, notes = NULL, align = NULL, add_columns = NULL, add_rows = NULL, sparse_header = TRUE, escape = TRUE, ... )
datasummary( formula, data, output = "default", fmt = 2, title = NULL, notes = NULL, align = NULL, add_columns = NULL, add_rows = NULL, sparse_header = TRUE, escape = TRUE, ... )
formula |
A two-sided formula to describe the table: rows ~ columns. See the Examples section for a mini-tutorial and the Details section for more resources. Grouping/nesting variables can appear on both sides of the formula, but all summary functions must be on one side. |
data |
A data.frame (or tibble) |
output |
filename or object type (character string)
|
fmt |
how to format numeric values: integer, user-supplied function, or
|
title |
string. Cross-reference labels should be added with Quarto or Rmarkdown chunk options when applicable. When saving standalone LaTeX files, users can add a label such as |
notes |
list or vector of notes to append to the bottom of the table. |
align |
A string with a number of characters equal to the number of columns in
the table (e.g.,
|
add_columns |
a data.frame (or tibble) with the same number of rows as your main table. |
add_rows |
a data.frame (or tibble) with the same number of columns as your main table. By default, rows are appended to the bottom of the table. You can define a "position" attribute of integers to set the row positions. See Examples section below. |
sparse_header |
TRUE or FALSE. TRUE eliminates column headers which
have a unique label across all columns, except for the row immediately above
the data. FALSE keeps all headers. The order in which terms are entered in
the formula determines the order in which headers appear. For example,
|
escape |
boolean TRUE escapes or substitutes LaTeX/HTML characters which could
prevent the file from compiling/displaying. |
... |
all other arguments are passed through to the table-making
functions tinytable::tt, kableExtra::kbl, gt::gt, DT::datatable, etc. depending on the |
Visit the 'modelsummary' website for more usage examples: https://modelsummary.com
The 'datasummary' function is a thin wrapper around the 'tabular' function from the 'tables' package. More details about table-making formulas can be found in the 'tables' package documentation: ?tables::tabular
Hierarchical or "nested" column labels are only available for these output formats: tinytable, kableExtra, gt, html, rtf, and LaTeX. When saving tables to other formats, nested labels will be combined to a "flat" header.
Since version 2.0.0, modelsummary
uses tinytable
as its default table-drawing backend.
Learn more at: https://vincentarelbundock.github.io/tinytable/",
Revert to kableExtra
for one session:
options(modelsummary_factory_default = 'kableExtra')
options(modelsummary_factory_latex = 'kableExtra')
options(modelsummary_factory_html = 'kableExtra')
The behavior of modelsummary
can be modified by setting global options. For example:
options(modelsummary_model_labels = "roman")
The rest of this section describes each of the options above.
These global option changes the style of the default column headers:
options(modelsummary_model_labels = "roman")
options(modelsummary_panel_labels = "roman")
The supported styles are: "model", "panel", "arabic", "letters", "roman", "(arabic)", "(letters)", "(roman)"
The panel-specific option is only used when shape="rbind"
modelsummary
supports 6 table-making packages: tinytable
, kableExtra
, gt
,
flextable
, huxtable
, and DT
. Some of these packages have overlapping
functionalities. To change the default backend used for a specific file
format, you can use ' the options
function:
options(modelsummary_factory_html = 'kableExtra')
options(modelsummary_factory_word = 'huxtable')
options(modelsummary_factory_png = 'gt')
options(modelsummary_factory_latex = 'gt')
options(modelsummary_factory_latex_tabular = 'kableExtra')
Change the look of tables in an automated and replicable way, using the modelsummary
theming functionality. See the vignette: https://modelsummary.com/articles/appearance.html
modelsummary_theme_gt
modelsummary_theme_kableExtra
modelsummary_theme_huxtable
modelsummary_theme_flextable
modelsummary_theme_dataframe
modelsummary
can use two sets of packages to extract information from
statistical models: the easystats
family (performance
and parameters
)
and broom
. By default, it uses easystats
first and then falls back on
broom
in case of failure. You can change the order of priorities or include
goodness-of-fit extracted by both packages by setting:
options(modelsummary_get = "easystats")
options(modelsummary_get = "broom")
options(modelsummary_get = "all")
By default, LaTeX tables enclose all numeric entries in the \num{}
command
from the siunitx package. To prevent this behavior, or to enclose numbers
in dollar signs (for LaTeX math mode), users can call:
options(modelsummary_format_numeric_latex = "plain")
options(modelsummary_format_numeric_latex = "mathmode")
A similar option can be used to display numerical entries using MathJax in HTML tables:
options(modelsummary_format_numeric_html = "mathjax")
When creating LaTeX via the tinytable
backend (default in version 2.0.0 and later), it is useful to include the following commands in the LaTeX preamble of your documents. Note that they are added automatically when compiling Rmarkdown or Quarto documents (except when the modelsummary()
calls are cached).
\usepackage{tabularray} \usepackage{float} \usepackage{graphicx} \usepackage[normalem]{ulem} \UseTblrLibrary{booktabs} \UseTblrLibrary{siunitx} \newcommand{\tinytableTabularrayUnderline}[1]{\underline{#1}} \newcommand{\tinytableTabularrayStrikeout}[1]{\sout{#1}} \NewTableCommand{\tinytableDefineColor}[3]{\definecolor{#1}{#2}{#3}}
library(modelsummary) # The left-hand side of the formula describes rows, and the right-hand side # describes columns. This table uses the "mpg" variable as a row and the "mean" # function as a column: datasummary(mpg ~ mean, data = mtcars) # This table uses the "mean" function as a row and the "mpg" variable as a column: datasummary(mean ~ mpg, data = mtcars) # Display several variables or functions of the data using the "+" # concatenation operator. This table has 2 rows and 2 columns: datasummary(hp + mpg ~ mean + sd, data = mtcars) # Nest variables or statistics inside a "factor" variable using the "*" nesting # operator. This table shows the mean of "hp" and "mpg" for each value of # "cyl": mtcars$cyl <- as.factor(mtcars$cyl) datasummary(hp + mpg ~ cyl * mean, data = mtcars) # If you don't want to convert your original data # to factors, you can use the 'Factor()' # function inside 'datasummary' to obtain an identical result: datasummary(hp + mpg ~ Factor(cyl) * mean, data = mtcars) # You can nest several variables or statistics inside a factor by using # parentheses. This table shows the mean and the standard deviation for each # subset of "cyl": datasummary(hp + mpg ~ cyl * (mean + sd), data = mtcars) # Summarize all numeric variables with 'All()' datasummary(All(mtcars) ~ mean + sd, data = mtcars) # Define custom summary statistics. Your custom function should accept a vector # of numeric values and return a single numeric or string value: minmax <- function(x) sprintf("[%.2f, %.2f]", min(x), max(x)) mean_na <- function(x) mean(x, na.rm = TRUE) datasummary(hp + mpg ~ minmax + mean_na, data = mtcars) # To handle missing values, you can pass arguments to your functions using # '*Arguments()' datasummary(hp + mpg ~ mean * Arguments(na.rm = TRUE), data = mtcars) # For convenience, 'modelsummary' supplies several convenience functions # with the argument `na.rm=TRUE` by default: Mean, Median, Min, Max, SD, Var, # P0, P25, P50, P75, P100, NUnique, Histogram #datasummary(hp + mpg ~ Mean + SD + Histogram, data = mtcars) # These functions also accept a 'fmt' argument which allows you to # round/format the results datasummary(hp + mpg ~ Mean * Arguments(fmt = "%.3f") + SD * Arguments(fmt = "%.1f"), data = mtcars) # Save your tables to a variety of output formats: f <- hp + mpg ~ Mean + SD #datasummary(f, data = mtcars, output = 'table.html') #datasummary(f, data = mtcars, output = 'table.tex') #datasummary(f, data = mtcars, output = 'table.md') #datasummary(f, data = mtcars, output = 'table.docx') #datasummary(f, data = mtcars, output = 'table.pptx') #datasummary(f, data = mtcars, output = 'table.jpg') #datasummary(f, data = mtcars, output = 'table.png') # Display human-readable code #datasummary(f, data = mtcars, output = 'html') #datasummary(f, data = mtcars, output = 'markdown') #datasummary(f, data = mtcars, output = 'latex') # Return a table object to customize using a table-making package #datasummary(f, data = mtcars, output = 'tinytable') #datasummary(f, data = mtcars, output = 'gt') #datasummary(f, data = mtcars, output = 'kableExtra') #datasummary(f, data = mtcars, output = 'flextable') #datasummary(f, data = mtcars, output = 'huxtable') # add_rows new_rows <- data.frame(a = 1:2, b = 2:3, c = 4:5) attr(new_rows, 'position') <- c(1, 3) datasummary(mpg + hp ~ mean + sd, data = mtcars, add_rows = new_rows)
Arel-Bundock V (2022). “modelsummary: Data and Model Summaries in R.” Journal of Statistical Software, 103(1), 1-23. doi:10.18637/jss.v103.i01.'
Creates balance tables with summary statistics for different subsets of the
data (e.g., control and treatment groups). It can also be used to create
summary tables for full data sets. See the Details and Examples sections
below, and the vignettes on the modelsummary
website:
https://modelsummary.com/
https://modelsummary.com/articles/datasummary.html
datasummary_balance( formula, data, output = "default", fmt = fmt_decimal(digits = 1, pdigits = 3), title = NULL, notes = NULL, align = NULL, stars = FALSE, add_columns = NULL, add_rows = NULL, dinm = TRUE, dinm_statistic = "std.error", escape = TRUE, ... )
datasummary_balance( formula, data, output = "default", fmt = fmt_decimal(digits = 1, pdigits = 3), title = NULL, notes = NULL, align = NULL, stars = FALSE, add_columns = NULL, add_rows = NULL, dinm = TRUE, dinm_statistic = "std.error", escape = TRUE, ... )
formula |
|
data |
A data.frame (or tibble). If this data includes columns called
"blocks", "clusters", and/or "weights", the "estimatr" package will consider
them when calculating the difference in means. If there is a |
output |
filename or object type (character string)
|
fmt |
how to format numeric values: integer, user-supplied function, or
|
title |
string. Cross-reference labels should be added with Quarto or Rmarkdown chunk options when applicable. When saving standalone LaTeX files, users can add a label such as |
notes |
list or vector of notes to append to the bottom of the table. |
align |
A string with a number of characters equal to the number of columns in
the table (e.g.,
|
stars |
to indicate statistical significance
|
add_columns |
a data.frame (or tibble) with the same number of rows as your main table. |
add_rows |
a data.frame (or tibble) with the same number of columns as your main table. By default, rows are appended to the bottom of the table. You can define a "position" attribute of integers to set the row positions. See Examples section below. |
dinm |
TRUE calculates a difference in means with uncertainty
estimates. This option is only available if the |
dinm_statistic |
string: "std.error" or "p.value" |
escape |
boolean TRUE escapes or substitutes LaTeX/HTML characters which could
prevent the file from compiling/displaying. |
... |
all other arguments are passed through to the table-making
functions tinytable::tt, kableExtra::kbl, gt::gt, DT::datatable, etc. depending on the |
Since version 2.0.0, modelsummary
uses tinytable
as its default table-drawing backend.
Learn more at: https://vincentarelbundock.github.io/tinytable/",
Revert to kableExtra
for one session:
options(modelsummary_factory_default = 'kableExtra')
options(modelsummary_factory_latex = 'kableExtra')
options(modelsummary_factory_html = 'kableExtra')
The behavior of modelsummary
can be modified by setting global options. For example:
options(modelsummary_model_labels = "roman")
The rest of this section describes each of the options above.
These global option changes the style of the default column headers:
options(modelsummary_model_labels = "roman")
options(modelsummary_panel_labels = "roman")
The supported styles are: "model", "panel", "arabic", "letters", "roman", "(arabic)", "(letters)", "(roman)"
The panel-specific option is only used when shape="rbind"
modelsummary
supports 6 table-making packages: tinytable
, kableExtra
, gt
,
flextable
, huxtable
, and DT
. Some of these packages have overlapping
functionalities. To change the default backend used for a specific file
format, you can use ' the options
function:
options(modelsummary_factory_html = 'kableExtra')
options(modelsummary_factory_word = 'huxtable')
options(modelsummary_factory_png = 'gt')
options(modelsummary_factory_latex = 'gt')
options(modelsummary_factory_latex_tabular = 'kableExtra')
Change the look of tables in an automated and replicable way, using the modelsummary
theming functionality. See the vignette: https://modelsummary.com/articles/appearance.html
modelsummary_theme_gt
modelsummary_theme_kableExtra
modelsummary_theme_huxtable
modelsummary_theme_flextable
modelsummary_theme_dataframe
modelsummary
can use two sets of packages to extract information from
statistical models: the easystats
family (performance
and parameters
)
and broom
. By default, it uses easystats
first and then falls back on
broom
in case of failure. You can change the order of priorities or include
goodness-of-fit extracted by both packages by setting:
options(modelsummary_get = "easystats")
options(modelsummary_get = "broom")
options(modelsummary_get = "all")
By default, LaTeX tables enclose all numeric entries in the \num{}
command
from the siunitx package. To prevent this behavior, or to enclose numbers
in dollar signs (for LaTeX math mode), users can call:
options(modelsummary_format_numeric_latex = "plain")
options(modelsummary_format_numeric_latex = "mathmode")
A similar option can be used to display numerical entries using MathJax in HTML tables:
options(modelsummary_format_numeric_html = "mathjax")
When creating LaTeX via the tinytable
backend (default in version 2.0.0 and later), it is useful to include the following commands in the LaTeX preamble of your documents. Note that they are added automatically when compiling Rmarkdown or Quarto documents (except when the modelsummary()
calls are cached).
\usepackage{tabularray} \usepackage{float} \usepackage{graphicx} \usepackage[normalem]{ulem} \UseTblrLibrary{booktabs} \UseTblrLibrary{siunitx} \newcommand{\tinytableTabularrayUnderline}[1]{\underline{#1}} \newcommand{\tinytableTabularrayStrikeout}[1]{\sout{#1}} \NewTableCommand{\tinytableDefineColor}[3]{\definecolor{#1}{#2}{#3}}
library(modelsummary) datasummary_balance(~am, mtcars)
Arel-Bundock V (2022). “modelsummary: Data and Model Summaries in R.” Journal of Statistical Software, 103(1), 1-23. doi:10.18637/jss.v103.i01.'
The names of the variables displayed in the correlation table are the names
of the columns in the data
. You can rename those columns (with or without
spaces) to produce a table of human-readable variables. See the Details and
Examples sections below, and the vignettes on the modelsummary
website:
https://modelsummary.com/
https://modelsummary.com/articles/datasummary.html
datasummary_correlation( data, output = "default", method = "pearson", fmt = 2, align = NULL, add_rows = NULL, add_columns = NULL, title = NULL, notes = NULL, escape = TRUE, stars = FALSE, ... )
datasummary_correlation( data, output = "default", method = "pearson", fmt = 2, align = NULL, add_rows = NULL, add_columns = NULL, title = NULL, notes = NULL, escape = TRUE, stars = FALSE, ... )
data |
A data.frame (or tibble) |
output |
filename or object type (character string)
|
method |
character or function
|
fmt |
how to format numeric values: integer, user-supplied function, or
|
align |
A string with a number of characters equal to the number of columns in
the table (e.g.,
|
add_rows |
a data.frame (or tibble) with the same number of columns as your main table. By default, rows are appended to the bottom of the table. You can define a "position" attribute of integers to set the row positions. See Examples section below. |
add_columns |
a data.frame (or tibble) with the same number of rows as your main table. |
title |
string. Cross-reference labels should be added with Quarto or Rmarkdown chunk options when applicable. When saving standalone LaTeX files, users can add a label such as |
notes |
list or vector of notes to append to the bottom of the table. |
escape |
boolean TRUE escapes or substitutes LaTeX/HTML characters which could
prevent the file from compiling/displaying. |
stars |
to indicate statistical significance
|
... |
other parameters are passed through to the table-making packages. |
Since version 2.0.0, modelsummary
uses tinytable
as its default table-drawing backend.
Learn more at: https://vincentarelbundock.github.io/tinytable/",
Revert to kableExtra
for one session:
options(modelsummary_factory_default = 'kableExtra')
options(modelsummary_factory_latex = 'kableExtra')
options(modelsummary_factory_html = 'kableExtra')
The behavior of modelsummary
can be modified by setting global options. For example:
options(modelsummary_model_labels = "roman")
The rest of this section describes each of the options above.
These global option changes the style of the default column headers:
options(modelsummary_model_labels = "roman")
options(modelsummary_panel_labels = "roman")
The supported styles are: "model", "panel", "arabic", "letters", "roman", "(arabic)", "(letters)", "(roman)"
The panel-specific option is only used when shape="rbind"
modelsummary
supports 6 table-making packages: tinytable
, kableExtra
, gt
,
flextable
, huxtable
, and DT
. Some of these packages have overlapping
functionalities. To change the default backend used for a specific file
format, you can use ' the options
function:
options(modelsummary_factory_html = 'kableExtra')
options(modelsummary_factory_word = 'huxtable')
options(modelsummary_factory_png = 'gt')
options(modelsummary_factory_latex = 'gt')
options(modelsummary_factory_latex_tabular = 'kableExtra')
Change the look of tables in an automated and replicable way, using the modelsummary
theming functionality. See the vignette: https://modelsummary.com/articles/appearance.html
modelsummary_theme_gt
modelsummary_theme_kableExtra
modelsummary_theme_huxtable
modelsummary_theme_flextable
modelsummary_theme_dataframe
modelsummary
can use two sets of packages to extract information from
statistical models: the easystats
family (performance
and parameters
)
and broom
. By default, it uses easystats
first and then falls back on
broom
in case of failure. You can change the order of priorities or include
goodness-of-fit extracted by both packages by setting:
options(modelsummary_get = "easystats")
options(modelsummary_get = "broom")
options(modelsummary_get = "all")
By default, LaTeX tables enclose all numeric entries in the \num{}
command
from the siunitx package. To prevent this behavior, or to enclose numbers
in dollar signs (for LaTeX math mode), users can call:
options(modelsummary_format_numeric_latex = "plain")
options(modelsummary_format_numeric_latex = "mathmode")
A similar option can be used to display numerical entries using MathJax in HTML tables:
options(modelsummary_format_numeric_html = "mathjax")
When creating LaTeX via the tinytable
backend (default in version 2.0.0 and later), it is useful to include the following commands in the LaTeX preamble of your documents. Note that they are added automatically when compiling Rmarkdown or Quarto documents (except when the modelsummary()
calls are cached).
\usepackage{tabularray} \usepackage{float} \usepackage{graphicx} \usepackage[normalem]{ulem} \UseTblrLibrary{booktabs} \UseTblrLibrary{siunitx} \newcommand{\tinytableTabularrayUnderline}[1]{\underline{#1}} \newcommand{\tinytableTabularrayStrikeout}[1]{\sout{#1}} \NewTableCommand{\tinytableDefineColor}[3]{\definecolor{#1}{#2}{#3}}
library(modelsummary) # clean variable names (base R) dat <- mtcars[, c("mpg", "hp")] colnames(dat) <- c("Miles / Gallon", "Horse Power") datasummary_correlation(dat) # clean variable names (tidyverse) library(tidyverse) dat <- mtcars %>% select(`Miles / Gallon` = mpg, `Horse Power` = hp) datasummary_correlation(dat) # `correlation` package objects if (requireNamespace("correlation", quietly = TRUE)) { co <- correlation::correlation(mtcars[, 1:4]) datasummary_correlation(co) # add stars to easycorrelation objects datasummary_correlation(co, stars = TRUE) } # alternative methods datasummary_correlation(dat, method = "pearspear") # custom function cor_fun <- function(x) cor(x, method = "kendall") datasummary_correlation(dat, method = cor_fun) # rename columns alphabetically and include a footnote for reference note <- sprintf("(%s) %s", letters[1:ncol(dat)], colnames(dat)) note <- paste(note, collapse = "; ") colnames(dat) <- sprintf("(%s)", letters[1:ncol(dat)]) datasummary_correlation(dat, notes = note) # `datasummary_correlation_format`: custom function with formatting dat <- mtcars[, c("mpg", "hp", "disp")] cor_fun <- function(x) { out <- cor(x, method = "kendall") datasummary_correlation_format( out, fmt = 2, upper_triangle = "x", diagonal = ".") } datasummary_correlation(dat, method = cor_fun) # use kableExtra and psych to color significant cells library(psych) library(kableExtra) dat <- mtcars[, c("vs", "hp", "gear")] cor_fun <- function(dat) { # compute correlations and format them correlations <- data.frame(cor(dat)) correlations <- datasummary_correlation_format(correlations, fmt = 2) # calculate pvalues using the `psych` package pvalues <- psych::corr.test(dat)$p # use `kableExtra::cell_spec` to color significant cells for (i in 1:nrow(correlations)) { for (j in 1:ncol(correlations)) { if (pvalues[i, j] < 0.05 && i != j) { correlations[i, j] <- cell_spec(correlations[i, j], background = "pink") } } } return(correlations) } # The `escape=FALSE` is important here! datasummary_correlation(dat, method = cor_fun, escape = FALSE)
Arel-Bundock V (2022). “modelsummary: Data and Model Summaries in R.” Journal of Statistical Software, 103(1), 1-23. doi:10.18637/jss.v103.i01.'
Mostly for internal use, but can be useful when users supply a function to
the method
argument of datasummary_correlation
.
datasummary_correlation_format( x, fmt, leading_zero = FALSE, diagonal = NULL, upper_triangle = NULL, stars = FALSE )
datasummary_correlation_format( x, fmt, leading_zero = FALSE, diagonal = NULL, upper_triangle = NULL, stars = FALSE )
x |
square numeric matrix |
fmt |
how to format numeric values: integer, user-supplied function, or
|
leading_zero |
boolean. If |
diagonal |
character or NULL. If character, all elements of the diagonal are replaced by the same character (e.g., "1"). |
upper_triangle |
character or NULL. If character, all elements of the upper triangle are replaced by the same character (e.g., "" or "."). |
stars |
to indicate statistical significance
|
library(modelsummary) dat <- mtcars[, c("mpg", "hp", "disp")] cor_fun <- function(x) { out <- cor(x, method = "kendall") datasummary_correlation_format( out, fmt = 2, upper_triangle = "x", diagonal = ".") } datasummary_correlation(dat, method = cor_fun)
library(modelsummary) dat <- mtcars[, c("mpg", "hp", "disp")] cor_fun <- function(x) { out <- cor(x, method = "kendall") datasummary_correlation_format( out, fmt = 2, upper_triangle = "x", diagonal = ".") } datasummary_correlation(dat, method = cor_fun)
Convenience function to tabulate counts, cell percentages, and row/column
percentages for categorical variables. See the Details section for a
description of the internal design. For more complex cross tabulations, use
datasummary directly. See the Details and Examples sections below,
and the vignettes on the modelsummary
website:
https://modelsummary.com/
https://modelsummary.com/articles/datasummary.html
datasummary_crosstab( formula, statistic = 1 ~ 1 + N + Percent("row"), data, output = "default", fmt = 1, title = NULL, notes = NULL, align = NULL, add_columns = NULL, add_rows = NULL, sparse_header = TRUE, escape = TRUE, ... )
datasummary_crosstab( formula, statistic = 1 ~ 1 + N + Percent("row"), data, output = "default", fmt = 1, title = NULL, notes = NULL, align = NULL, add_columns = NULL, add_rows = NULL, sparse_header = TRUE, escape = TRUE, ... )
formula |
A two-sided formula to describe the table: rows ~ columns,
where rows and columns are variables in the data. Rows and columns may
contain interactions, e.g., |
statistic |
A formula of the form |
data |
A data.frame (or tibble) |
output |
filename or object type (character string)
|
fmt |
how to format numeric values: integer, user-supplied function, or
|
title |
string. Cross-reference labels should be added with Quarto or Rmarkdown chunk options when applicable. When saving standalone LaTeX files, users can add a label such as |
notes |
list or vector of notes to append to the bottom of the table. |
align |
A string with a number of characters equal to the number of columns in
the table (e.g.,
|
add_columns |
a data.frame (or tibble) with the same number of rows as your main table. |
add_rows |
a data.frame (or tibble) with the same number of columns as your main table. By default, rows are appended to the bottom of the table. You can define a "position" attribute of integers to set the row positions. See Examples section below. |
sparse_header |
TRUE or FALSE. TRUE eliminates column headers which
have a unique label across all columns, except for the row immediately above
the data. FALSE keeps all headers. The order in which terms are entered in
the formula determines the order in which headers appear. For example,
|
escape |
boolean TRUE escapes or substitutes LaTeX/HTML characters which could
prevent the file from compiling/displaying. |
... |
all other arguments are passed through to the table-making
functions tinytable::tt, kableExtra::kbl, gt::gt, DT::datatable, etc. depending on the |
datasummary_crosstab
is a wrapper around the datasummary
function. This wrapper works by creating a customized formula and by
feeding it to datasummary
. The customized formula comes in two parts.
First, we take a two-sided formula supplied by the formula
argument.
All variables of that formula are wrapped in a Factor()
call to ensure
that the variables are treated as categorical.
Second, the statistic
argument gives a two-sided formula which specifies
the statistics to include in the table. datasummary_crosstab
modifies
this formula automatically to include "clean" labels.
Finally, the formula
and statistic
formulas are combined into a single
formula which is fed directly to the datasummary
function to produce the
table.
Variables in formula
are automatically wrapped in Factor()
.
Since version 2.0.0, modelsummary
uses tinytable
as its default table-drawing backend.
Learn more at: https://vincentarelbundock.github.io/tinytable/",
Revert to kableExtra
for one session:
options(modelsummary_factory_default = 'kableExtra')
options(modelsummary_factory_latex = 'kableExtra')
options(modelsummary_factory_html = 'kableExtra')
The behavior of modelsummary
can be modified by setting global options. For example:
options(modelsummary_model_labels = "roman")
The rest of this section describes each of the options above.
These global option changes the style of the default column headers:
options(modelsummary_model_labels = "roman")
options(modelsummary_panel_labels = "roman")
The supported styles are: "model", "panel", "arabic", "letters", "roman", "(arabic)", "(letters)", "(roman)"
The panel-specific option is only used when shape="rbind"
modelsummary
supports 6 table-making packages: tinytable
, kableExtra
, gt
,
flextable
, huxtable
, and DT
. Some of these packages have overlapping
functionalities. To change the default backend used for a specific file
format, you can use ' the options
function:
options(modelsummary_factory_html = 'kableExtra')
options(modelsummary_factory_word = 'huxtable')
options(modelsummary_factory_png = 'gt')
options(modelsummary_factory_latex = 'gt')
options(modelsummary_factory_latex_tabular = 'kableExtra')
Change the look of tables in an automated and replicable way, using the modelsummary
theming functionality. See the vignette: https://modelsummary.com/articles/appearance.html
modelsummary_theme_gt
modelsummary_theme_kableExtra
modelsummary_theme_huxtable
modelsummary_theme_flextable
modelsummary_theme_dataframe
modelsummary
can use two sets of packages to extract information from
statistical models: the easystats
family (performance
and parameters
)
and broom
. By default, it uses easystats
first and then falls back on
broom
in case of failure. You can change the order of priorities or include
goodness-of-fit extracted by both packages by setting:
options(modelsummary_get = "easystats")
options(modelsummary_get = "broom")
options(modelsummary_get = "all")
By default, LaTeX tables enclose all numeric entries in the \num{}
command
from the siunitx package. To prevent this behavior, or to enclose numbers
in dollar signs (for LaTeX math mode), users can call:
options(modelsummary_format_numeric_latex = "plain")
options(modelsummary_format_numeric_latex = "mathmode")
A similar option can be used to display numerical entries using MathJax in HTML tables:
options(modelsummary_format_numeric_html = "mathjax")
When creating LaTeX via the tinytable
backend (default in version 2.0.0 and later), it is useful to include the following commands in the LaTeX preamble of your documents. Note that they are added automatically when compiling Rmarkdown or Quarto documents (except when the modelsummary()
calls are cached).
\usepackage{tabularray} \usepackage{float} \usepackage{graphicx} \usepackage[normalem]{ulem} \UseTblrLibrary{booktabs} \UseTblrLibrary{siunitx} \newcommand{\tinytableTabularrayUnderline}[1]{\underline{#1}} \newcommand{\tinytableTabularrayStrikeout}[1]{\sout{#1}} \NewTableCommand{\tinytableDefineColor}[3]{\definecolor{#1}{#2}{#3}}
library(modelsummary) # crosstab of two variables, showing counts, row percentages, and row/column totals datasummary_crosstab(cyl ~ gear, data = mtcars) # crosstab of two variables, showing counts only and no totals datasummary_crosstab(cyl ~ gear, statistic = ~ N, data = mtcars) # crosstab of three variables datasummary_crosstab(am * cyl ~ gear, data = mtcars) # crosstab with two variables and column percentages datasummary_crosstab(am ~ gear, statistic = ~ Percent("col"), data = mtcars)
Arel-Bundock V (2022). “modelsummary: Data and Model Summaries in R.” Journal of Statistical Software, 103(1), 1-23. doi:10.18637/jss.v103.i01.'
Draw a table from a data.frame
datasummary_df( data, output = "default", fmt = 2, align = NULL, hrule = NULL, title = NULL, notes = NULL, add_rows = NULL, add_columns = NULL, escape = TRUE, ... )
datasummary_df( data, output = "default", fmt = 2, align = NULL, hrule = NULL, title = NULL, notes = NULL, add_rows = NULL, add_columns = NULL, escape = TRUE, ... )
data |
A data.frame (or tibble) |
output |
filename or object type (character string)
|
fmt |
how to format numeric values: integer, user-supplied function, or
|
align |
A string with a number of characters equal to the number of columns in
the table (e.g.,
|
hrule |
position of horizontal rules (integer vector) |
title |
string. Cross-reference labels should be added with Quarto or Rmarkdown chunk options when applicable. When saving standalone LaTeX files, users can add a label such as |
notes |
list or vector of notes to append to the bottom of the table. |
add_rows |
a data.frame (or tibble) with the same number of columns as your main table. By default, rows are appended to the bottom of the table. You can define a "position" attribute of integers to set the row positions. See Examples section below. |
add_columns |
a data.frame (or tibble) with the same number of rows as your main table. |
escape |
boolean TRUE escapes or substitutes LaTeX/HTML characters which could
prevent the file from compiling/displaying. |
... |
all other arguments are passed through to the table-making
functions tinytable::tt, kableExtra::kbl, gt::gt, DT::datatable, etc. depending on the |
Since version 2.0.0, modelsummary
uses tinytable
as its default table-drawing backend.
Learn more at: https://vincentarelbundock.github.io/tinytable/",
Revert to kableExtra
for one session:
options(modelsummary_factory_default = 'kableExtra')
options(modelsummary_factory_latex = 'kableExtra')
options(modelsummary_factory_html = 'kableExtra')
Arel-Bundock V (2022). “modelsummary: Data and Model Summaries in R.” Journal of Statistical Software, 103(1), 1-23. doi:10.18637/jss.v103.i01.'
This function was inspired by the excellent skimr
package for R.
See the Details and Examples sections below, and the vignettes on the
modelsummary
website:
https://modelsummary.com/
https://modelsummary.com/articles/datasummary.html
datasummary_skim( data, output = "default", type = "all", fmt = 1, title = NULL, notes = NULL, align = NULL, escape = TRUE, by = NULL, fun_numeric = list(Unique = NUnique, `Missing Pct.` = PercentMissing, Mean = Mean, SD = SD, Min = Min, Median = Median, Max = Max, Histogram = function(x) ""), ... )
datasummary_skim( data, output = "default", type = "all", fmt = 1, title = NULL, notes = NULL, align = NULL, escape = TRUE, by = NULL, fun_numeric = list(Unique = NUnique, `Missing Pct.` = PercentMissing, Mean = Mean, SD = SD, Min = Min, Median = Median, Max = Max, Histogram = function(x) ""), ... )
data |
A data.frame (or tibble) |
output |
filename or object type (character string)
|
type |
String. Variables to summarize: "all", "numeric", "categorical", "dataset" |
fmt |
how to format numeric values: integer, user-supplied function, or
|
title |
string. Cross-reference labels should be added with Quarto or Rmarkdown chunk options when applicable. When saving standalone LaTeX files, users can add a label such as |
notes |
list or vector of notes to append to the bottom of the table. |
align |
A string with a number of characters equal to the number of columns in
the table (e.g.,
|
escape |
boolean TRUE escapes or substitutes LaTeX/HTML characters which could
prevent the file from compiling/displaying. |
by |
Character vector of grouping variables to compute statistics over. |
fun_numeric |
Named list of funtions to apply to each numeric column of |
... |
all other arguments are passed through to the table-making
functions tinytable::tt, kableExtra::kbl, gt::gt, DT::datatable, etc. depending on the |
Since version 2.0.0, modelsummary
uses tinytable
as its default table-drawing backend.
Learn more at: https://vincentarelbundock.github.io/tinytable/",
Revert to kableExtra
for one session:
options(modelsummary_factory_default = 'kableExtra')
options(modelsummary_factory_latex = 'kableExtra')
options(modelsummary_factory_html = 'kableExtra')
The behavior of modelsummary
can be modified by setting global options. For example:
options(modelsummary_model_labels = "roman")
The rest of this section describes each of the options above.
These global option changes the style of the default column headers:
options(modelsummary_model_labels = "roman")
options(modelsummary_panel_labels = "roman")
The supported styles are: "model", "panel", "arabic", "letters", "roman", "(arabic)", "(letters)", "(roman)"
The panel-specific option is only used when shape="rbind"
modelsummary
supports 6 table-making packages: tinytable
, kableExtra
, gt
,
flextable
, huxtable
, and DT
. Some of these packages have overlapping
functionalities. To change the default backend used for a specific file
format, you can use ' the options
function:
options(modelsummary_factory_html = 'kableExtra')
options(modelsummary_factory_word = 'huxtable')
options(modelsummary_factory_png = 'gt')
options(modelsummary_factory_latex = 'gt')
options(modelsummary_factory_latex_tabular = 'kableExtra')
Change the look of tables in an automated and replicable way, using the modelsummary
theming functionality. See the vignette: https://modelsummary.com/articles/appearance.html
modelsummary_theme_gt
modelsummary_theme_kableExtra
modelsummary_theme_huxtable
modelsummary_theme_flextable
modelsummary_theme_dataframe
modelsummary
can use two sets of packages to extract information from
statistical models: the easystats
family (performance
and parameters
)
and broom
. By default, it uses easystats
first and then falls back on
broom
in case of failure. You can change the order of priorities or include
goodness-of-fit extracted by both packages by setting:
options(modelsummary_get = "easystats")
options(modelsummary_get = "broom")
options(modelsummary_get = "all")
By default, LaTeX tables enclose all numeric entries in the \num{}
command
from the siunitx package. To prevent this behavior, or to enclose numbers
in dollar signs (for LaTeX math mode), users can call:
options(modelsummary_format_numeric_latex = "plain")
options(modelsummary_format_numeric_latex = "mathmode")
A similar option can be used to display numerical entries using MathJax in HTML tables:
options(modelsummary_format_numeric_html = "mathjax")
When creating LaTeX via the tinytable
backend (default in version 2.0.0 and later), it is useful to include the following commands in the LaTeX preamble of your documents. Note that they are added automatically when compiling Rmarkdown or Quarto documents (except when the modelsummary()
calls are cached).
\usepackage{tabularray} \usepackage{float} \usepackage{graphicx} \usepackage[normalem]{ulem} \UseTblrLibrary{booktabs} \UseTblrLibrary{siunitx} \newcommand{\tinytableTabularrayUnderline}[1]{\underline{#1}} \newcommand{\tinytableTabularrayStrikeout}[1]{\sout{#1}} \NewTableCommand{\tinytableDefineColor}[3]{\definecolor{#1}{#2}{#3}}
Arel-Bundock V (2022). “modelsummary: Data and Model Summaries in R.” Journal of Statistical Software, 103(1), 1-23. doi:10.18637/jss.v103.i01.'
dat <- mtcars dat$vs <- as.logical(dat$vs) dat$cyl <- as.factor(dat$cyl) datasummary_skim(dat) datasummary_skim(dat, type = "categorical")
dat <- mtcars dat$vs <- as.logical(dat$vs) dat$cyl <- as.factor(dat$cyl) datasummary_skim(dat) datasummary_skim(dat, type = "categorical")
A convenience function for use with a regression model or list of regression models. Returns a named list of models, where the names are the models' respective dependent variables. Pass your list of models to dvnames
before sending to modelsummary
to automatically get dependent variable-titled columns.
dvnames(models, number = FALSE, strip = FALSE, fill = "Model")
dvnames(models, number = FALSE, strip = FALSE, fill = "Model")
models |
A regression model or list of regression models |
number |
Should the models be numbered (1), (2), etc., in addition to their dependent variable names? |
strip |
boolean FALSE returns the dependent variable names as they appear in the model. TRUE returns the dependent variable names as they appear in the data, without transformations. |
fill |
If |
m1 <- lm(mpg ~ hp, data = mtcars) m2 <- lm(mpg ~ hp + wt, data = mtcars) # Without dvnames, column names are (1) and (2) modelsummary(list(m1, m2)) # With dvnames, they are "mpg" and "mpg" modelsummary(dvnames(list(m1,m2)))
m1 <- lm(mpg ~ hp, data = mtcars) m2 <- lm(mpg ~ hp + wt, data = mtcars) # Without dvnames, column names are (1) and (2) modelsummary(list(m1, m2)) # With dvnames, they are "mpg" and "mpg" modelsummary(dvnames(list(m1,m2)))
fmt
argumentRounding with decimal digits in the fmt
argument
fmt_decimal(digits = 3, pdigits = NULL, ...)
fmt_decimal(digits = 3, pdigits = NULL, ...)
digits |
Number of decimal digits to keep, including trailing zeros. |
pdigits |
Number of decimal digits to keep for p values. If |
... |
Additional arguments are passed to the |
This function implements the suggestions of Astier & Wolak for the number of decimal digits to keep for coefficient estimates. The other statistics are rounded by fmt_significant()
.
fmt_equivalence(conf_level = 0.95, digits = 3, pdigits = NULL, ...)
fmt_equivalence(conf_level = 0.95, digits = 3, pdigits = NULL, ...)
conf_level |
Confidence level to use for the equivalence test (1 - alpha). |
digits |
Number of significant digits to keep. |
pdigits |
Number of decimal digits to keep for p values. If |
... |
Additional arguments are passed to the |
Astier, Nicolas, and Frank A. Wolak. Credible Numbers: A Procedure for Reporting Statistical Precision in Parameter Estimates. No. w32124. National Bureau of Economic Research, 2024.
library(modelsummary) mod <- lm(mpg ~ hp, mtcars) # Default equivalence-based formatting modelsummary(mod, fmt = fmt_equivalence()) # alpha = 0.2 modelsummary(mod, fmt = fmt_equivalence(conf_level = .8)) # default equivalence, but with alternative significant digits for other statistics modelsummary(mod, fmt = fmt_equivalence(digits = 5))
library(modelsummary) mod <- lm(mpg ~ hp, mtcars) # Default equivalence-based formatting modelsummary(mod, fmt = fmt_equivalence()) # alpha = 0.2 modelsummary(mod, fmt = fmt_equivalence(conf_level = .8)) # default equivalence, but with alternative significant digits for other statistics modelsummary(mod, fmt = fmt_equivalence(digits = 5))
Rounding using scientific notation
fmt_sci(digits = 3, ...)
fmt_sci(digits = 3, ...)
digits |
a positive integer indicating how many significant digits are to be used for numeric and complex |
... |
additional arguments passed to |
fmt
argumentThe number of decimal digits to keep after the decimal is assessed
fmt_significant(digits = 3, ...)
fmt_significant(digits = 3, ...)
digits |
Number of significant digits to keep. |
... |
Additional arguments are passed to the |
sprintf()
function in the fmt
argumentRounding with the sprintf()
function in the fmt
argument
fmt_sprintf(fmt)
fmt_sprintf(fmt)
fmt |
A string to control |
fmt
argument for modelsummary()
Rounding with decimal digits on a per-statistic basis in the fmt
argument for modelsummary()
fmt_statistic(..., default = 3)
fmt_statistic(..., default = 3)
... |
Statistic names and |
default |
Number of decimal digits to keep for unspecified terms |
fmt
argument for modelsummary()
Rounding with decimal digits on a per-term basis in the fmt
argument for modelsummary()
fmt_term(..., default = 3)
fmt_term(..., default = 3)
... |
Term names and |
default |
Number of decimal digits to keep for unspecified terms |
A unified approach to extract results from a wide variety of models. For
some models get_estimates
attaches useful attributes to the output. You
can access this information by calling the attributes
function:
attributes(get_estimates(model))
get_estimates( model, conf_level = 0.95, vcov = NULL, shape = NULL, coef_rename = FALSE, ... )
get_estimates( model, conf_level = 0.95, vcov = NULL, shape = NULL, coef_rename = FALSE, ... )
model |
a single model object |
conf_level |
numeric value between 0 and 1. confidence level to use for
confidence intervals. Setting this argument to |
vcov |
robust standard errors and other manual statistics. The
|
shape |
|
coef_rename |
logical, named or unnamed character vector, or function
|
... |
all other arguments are passed through to three functions. See the documentation of these functions for lists of available arguments.
|
A unified approach to extract results from a wide variety of models. For
some models get_gof
attaches useful attributes to the output. You
can access this information by calling the attributes
function:
attributes(get_estimates(model))
get_gof(model, gof_function = NULL, vcov_type = NULL, ...)
get_gof(model, gof_function = NULL, vcov_type = NULL, ...)
model |
a single model object |
gof_function |
function which accepts a model object in the |
vcov_type |
string vcov type to add at the bottom of the table |
... |
all other arguments are passed through to three functions. See the documentation of these functions for lists of available arguments.
|
By default, this data frame is passed to the 'gof_map' argument of the 'modelsummary' function. Users can modify this data frame to customize the list of statistics to display and their format. See example below.
gof_map
gof_map
data.frame with 4 columns of character data: raw, clean, fmt, omit
if (identical(Sys.getenv("pkgdown"), "true")) { library(modelsummary) mod <- lm(wt ~ drat, data = mtcars) gm <- modelsummary::gof_map gm$omit[gm$raw == 'deviance'] <- FALSE gm$fmt[gm$raw == 'r.squared'] <- "%.5f" modelsummary(mod, gof_map = gm) }
if (identical(Sys.getenv("pkgdown"), "true")) { library(modelsummary) mod <- lm(wt ~ drat, data = mtcars) gm <- modelsummary::gof_map gm$omit[gm$raw == 'deviance'] <- FALSE gm$fmt[gm$raw == 'r.squared'] <- "%.5f" modelsummary(mod, gof_map = gm) }
Dot-Whisker plot of coefficient estimates with confidence intervals. For
more information, see the Details and Examples sections below, and the
vignettes on the modelsummary
website:
https://modelsummary.com/
modelplot( models, conf_level = 0.95, coef_map = NULL, coef_omit = NULL, coef_rename = NULL, vcov = NULL, exponentiate = FALSE, add_rows = NULL, facet = FALSE, draw = TRUE, background = NULL, ... )
modelplot( models, conf_level = 0.95, coef_map = NULL, coef_omit = NULL, coef_rename = NULL, vcov = NULL, exponentiate = FALSE, add_rows = NULL, facet = FALSE, draw = TRUE, background = NULL, ... )
models |
a model, (named) list of models, or nested list of models.
|
conf_level |
numeric value between 0 and 1. confidence level to use for
confidence intervals. Setting this argument to |
coef_map |
character vector. Subset, rename, and reorder coefficients.
Coefficients omitted from this vector are omitted from the table. The order
of the vector determines the order of the table. |
coef_omit |
integer vector or regular expression to identify which coefficients to omit (or keep) from the table. Positive integers determine which coefficients to omit. Negative integers determine which coefficients to keep. A regular expression can be used to omit coefficients, and perl-compatible "negative lookaheads" can be used to specify which coefficients to keep in the table. Examples:
|
coef_rename |
logical, named or unnamed character vector, or function
|
vcov |
robust standard errors and other manual statistics. The
|
exponentiate |
TRUE, FALSE, or logical vector of length equal to the
number of models. If TRUE, the |
add_rows |
a data.frame (or tibble) with the same number of columns as your main table. By default, rows are appended to the bottom of the table. You can define a "position" attribute of integers to set the row positions. See Examples section below. |
facet |
TRUE or FALSE. When the 'models' argument includes several model objects, TRUE draws terms in separate facets, and FALSE draws terms side-by-side (dodged). |
draw |
TRUE returns a 'ggplot2' object, FALSE returns the data.frame used to draw the plot. |
background |
A list of 'ggplot2' geoms to add to the background of the plot. This is especially useful to display annotations "behind" the 'geom_pointrange' that 'modelplot' draws. |
... |
all other arguments are passed through to three functions. See the documentation of these functions for lists of available arguments.
|
library(modelsummary) # single model mod <- lm(hp ~ vs + drat, mtcars) modelplot(mod) # omit terms with string matches or regexes modelplot(mod, coef_omit = 'Interc') # rename, reorder and subset with 'coef_map' cm <- c('vs' = 'V-shape engine', 'drat' = 'Rear axle ratio') modelplot(mod, coef_map = cm) # several models models <- list() models[['Small model']] <- lm(hp ~ vs, mtcars) models[['Medium model']] <- lm(hp ~ vs + factor(cyl), mtcars) models[['Large model']] <- lm(hp ~ vs + drat + factor(cyl), mtcars) modelplot(models) # add_rows: add an empty reference category mod <- lm(hp ~ factor(cyl), mtcars) add_rows = data.frame( term = "factory(cyl)4", model = "(1)", estimate = NA) attr(add_rows, "position") = 3 modelplot(mod, add_rows = add_rows) # customize your plots with 'ggplot2' functions library(ggplot2) modelplot(models) + scale_color_brewer(type = 'qual') + theme_classic() # pass arguments to 'geom_pointrange' through the ... ellipsis modelplot(mod, color = 'red', size = 1, fatten = .5) # add geoms to the background, behind geom_pointrange b <- list(geom_vline(xintercept = 0, color = 'orange'), annotate("rect", alpha = .1, xmin = -.5, xmax = .5, ymin = -Inf, ymax = Inf), geom_point(aes(y = term, x = estimate), alpha = .3, size = 10, color = 'red', shape = 'square')) modelplot(mod, background = b) # logistic regression example df <- as.data.frame(Titanic) mod_titanic <- glm( Survived ~ Class + Sex, family = binomial, weight = Freq, data = df ) # displaying odds ratio using a log scale modelplot(mod_titanic, exponentiate = TRUE) + scale_x_log10() + xlab("Odds Ratios and 95% confidence intervals")
Arel-Bundock V (2022). “modelsummary: Data and Model Summaries in R.” Journal of Statistical Software, 103(1), 1-23. doi:10.18637/jss.v103.i01.'
Create beautiful and customizable tables to summarize several statistical
models side-by-side. This function supports dozens of statistical models,
and it can produce tables in HTML, LaTeX, Word, Markdown, Typst, PDF, PowerPoint,
Excel, RTF, JPG, or PNG. The appearance of the tables can be customized
extensively by specifying the output
argument, and by using functions from
one of the supported table customization packages: tinytable
, kableExtra
, gt
,
flextable
, huxtable
, DT
. For more information, see the Details and Examples
sections below, and the vignettes on the modelsummary
website:
https://modelsummary.com/
The modelsummary
Vignette includes dozens of examples of tables with extensive customizations.
The Appearance Vignette shows how to modify the look of tables.
modelsummary( models, output = "default", fmt = 3, estimate = "estimate", statistic = "std.error", vcov = NULL, conf_level = 0.95, exponentiate = FALSE, stars = FALSE, shape = term + statistic ~ model, coef_map = NULL, coef_omit = NULL, coef_rename = FALSE, gof_map = NULL, gof_omit = NULL, gof_function = NULL, group_map = NULL, add_columns = NULL, add_rows = NULL, align = NULL, notes = NULL, title = NULL, escape = TRUE, ... )
modelsummary( models, output = "default", fmt = 3, estimate = "estimate", statistic = "std.error", vcov = NULL, conf_level = 0.95, exponentiate = FALSE, stars = FALSE, shape = term + statistic ~ model, coef_map = NULL, coef_omit = NULL, coef_rename = FALSE, gof_map = NULL, gof_omit = NULL, gof_function = NULL, group_map = NULL, add_columns = NULL, add_rows = NULL, align = NULL, notes = NULL, title = NULL, escape = TRUE, ... )
models |
a model, (named) list of models, or nested list of models.
|
output |
filename or object type (character string)
|
fmt |
how to format numeric values: integer, user-supplied function, or
|
estimate |
a single string or a character vector of length equal to the
number of models. Valid entries include any column name of
the data.frame produced by
|
statistic |
vector of strings or
|
vcov |
robust standard errors and other manual statistics. The
|
conf_level |
numeric value between 0 and 1. confidence level to use for
confidence intervals. Setting this argument to |
exponentiate |
TRUE, FALSE, or logical vector of length equal to the
number of models. If TRUE, the |
stars |
to indicate statistical significance
|
shape |
|
coef_map |
character vector. Subset, rename, and reorder coefficients.
Coefficients omitted from this vector are omitted from the table. The order
of the vector determines the order of the table. |
coef_omit |
integer vector or regular expression to identify which coefficients to omit (or keep) from the table. Positive integers determine which coefficients to omit. Negative integers determine which coefficients to keep. A regular expression can be used to omit coefficients, and perl-compatible "negative lookaheads" can be used to specify which coefficients to keep in the table. Examples:
|
coef_rename |
logical, named or unnamed character vector, or function
|
gof_map |
rename, reorder, and omit goodness-of-fit statistics and other model information. This argument accepts 4 types of values:
|
gof_omit |
string regular expression (perl-compatible) used to determine which statistics to omit from the bottom section of the table. A "negative lookahead" can be used to specify which statistics to keep in the table. Examples:
|
gof_function |
function which accepts a model object in the |
group_map |
named or unnamed character vector. Subset, rename, and
reorder coefficient groups specified a grouping variable specified in the
|
add_columns |
a data.frame (or tibble) with the same number of rows as #' your main table. By default, rows are appended to the bottom of the table. You can define a "position" attribute of integers to set the columns positions. See Examples section below. |
add_rows |
a data.frame (or tibble) with the same number of columns as your main table. By default, rows are appended to the bottom of the table. You can define a "position" attribute of integers to set the row positions. See Examples section below. |
align |
A string with a number of characters equal to the number of columns in
the table (e.g.,
|
notes |
list or vector of notes to append to the bottom of the table. |
title |
string. Cross-reference labels should be added with Quarto or Rmarkdown chunk options when applicable. When saving standalone LaTeX files, users can add a label such as |
escape |
boolean TRUE escapes or substitutes LaTeX/HTML characters which could
prevent the file from compiling/displaying. |
... |
all other arguments are passed through to three functions. See the documentation of these functions for lists of available arguments.
|
output
The modelsummary_list
output is a lightweight format which can be used to save model results, so they can be fed back to modelsummary
later to avoid extracting results again.
When a file name with a valid extension is supplied to the output
argument,
the table is written immediately to file. If you want to customize your table
by post-processing it with an external package, you need to choose a
different output format and saving mechanism. Unfortunately, the approach
differs from package to package:
tinytable
: set output="tinytable"
, post-process your table, and use the tinytable::save_tt
function.
gt
: set output="gt"
, post-process your table, and use the gt::gtsave
function.
kableExtra
: set output
to your destination format (e.g., "latex", "html", "markdown"), post-process your table, and use kableExtra::save_kable
function.
vcov
To use a string such as "robust" or "HC0", your model must be supported
by the sandwich
package. This includes objects such as: lm, glm,
survreg, coxph, mlogit, polr, hurdle, zeroinfl, and more.
NULL, "classical", "iid", and "constant" are aliases which do not modify uncertainty estimates and simply report the default standard errors stored in the model object.
One-sided formulas such as ~clusterid
are passed to the sandwich::vcovCL
function.
Matrices and functions producing variance-covariance matrices are first
passed to lmtest
. If this does not work, modelsummary
attempts to take
the square root of the diagonal to adjust "std.error", but the other
uncertainty estimates are not be adjusted.
Numeric vectors are formatted according to fmt
and placed in brackets.
Character vectors printed as given, without parentheses.
If your model type is supported by the lmtest
package, the
vcov
argument will try to use that package to adjust all the
uncertainty estimates, including "std.error", "statistic", "p.value", and
"conf.int". If your model is not supported by lmtest
, only the "std.error"
will be adjusted by, for example, taking the square root of the matrix's
diagonal.
a regression table in a format determined by the output
argument.
Since version 2.0.0, modelsummary
uses tinytable
as its default table-drawing backend.
Learn more at: https://vincentarelbundock.github.io/tinytable/",
Revert to kableExtra
for one session:
options(modelsummary_factory_default = 'kableExtra')
options(modelsummary_factory_latex = 'kableExtra')
options(modelsummary_factory_html = 'kableExtra')
The behavior of modelsummary
can be modified by setting global options. For example:
options(modelsummary_model_labels = "roman")
The rest of this section describes each of the options above.
These global option changes the style of the default column headers:
options(modelsummary_model_labels = "roman")
options(modelsummary_panel_labels = "roman")
The supported styles are: "model", "panel", "arabic", "letters", "roman", "(arabic)", "(letters)", "(roman)"
The panel-specific option is only used when shape="rbind"
modelsummary
supports 6 table-making packages: tinytable
, kableExtra
, gt
,
flextable
, huxtable
, and DT
. Some of these packages have overlapping
functionalities. To change the default backend used for a specific file
format, you can use ' the options
function:
options(modelsummary_factory_html = 'kableExtra')
options(modelsummary_factory_word = 'huxtable')
options(modelsummary_factory_png = 'gt')
options(modelsummary_factory_latex = 'gt')
options(modelsummary_factory_latex_tabular = 'kableExtra')
Change the look of tables in an automated and replicable way, using the modelsummary
theming functionality. See the vignette: https://modelsummary.com/articles/appearance.html
modelsummary_theme_gt
modelsummary_theme_kableExtra
modelsummary_theme_huxtable
modelsummary_theme_flextable
modelsummary_theme_dataframe
modelsummary
can use two sets of packages to extract information from
statistical models: the easystats
family (performance
and parameters
)
and broom
. By default, it uses easystats
first and then falls back on
broom
in case of failure. You can change the order of priorities or include
goodness-of-fit extracted by both packages by setting:
options(modelsummary_get = "easystats")
options(modelsummary_get = "broom")
options(modelsummary_get = "all")
By default, LaTeX tables enclose all numeric entries in the \num{}
command
from the siunitx package. To prevent this behavior, or to enclose numbers
in dollar signs (for LaTeX math mode), users can call:
options(modelsummary_format_numeric_latex = "plain")
options(modelsummary_format_numeric_latex = "mathmode")
A similar option can be used to display numerical entries using MathJax in HTML tables:
options(modelsummary_format_numeric_html = "mathjax")
When creating LaTeX via the tinytable
backend (default in version 2.0.0 and later), it is useful to include the following commands in the LaTeX preamble of your documents. Note that they are added automatically when compiling Rmarkdown or Quarto documents (except when the modelsummary()
calls are cached).
\usepackage{tabularray} \usepackage{float} \usepackage{graphicx} \usepackage[normalem]{ulem} \UseTblrLibrary{booktabs} \UseTblrLibrary{siunitx} \newcommand{\tinytableTabularrayUnderline}[1]{\underline{#1}} \newcommand{\tinytableTabularrayStrikeout}[1]{\sout{#1}} \NewTableCommand{\tinytableDefineColor}[3]{\definecolor{#1}{#2}{#3}}
It can take a long time to compute and extract summary statistics from
certain models (e.g., Bayesian). In those cases, users can parallelize the
process. Since parallelization occurs at the model level, no speedup is
available for tables with a single model. Users on mac or linux can launch
parallel computation using the built-in parallel
package. All they need to
do is supply a mc.cores
argument which will be pushed forward to the
parallel::mclapply
function:
modelsummary(model_list, mc.cores = 5)
All users can also use the future.apply
package to parallelize model summaries.
For example, to use 4 cores to extract results:
library(future.apply) plan(multicore, workers = 4) options("modelsummary_future" = TRUE) modelsummary(model_list)
Note that the "multicore" plan only parallelizes under mac or linux. Windows
users can use plan(multisession)
instead. However, note that the first
time modelsummary()
is called under multisession can be a fair bit longer,
because of extra costs in passing data to and loading required packages on
to workers. Subsequent calls to modelsummary()
will often be much faster.
Some users have reported difficult to reproduce errors when using the
future
package with some packages. The future
parallelization in
modelsummary
can be disabled by calling:
options("modelsummary_future" = FALSE)
Arel-Bundock V (2022). “modelsummary: Data and Model Summaries in R.” Journal of Statistical Software, 103(1), 1-23. doi:10.18637/jss.v103.i01.'
# The `modelsummary` website includes \emph{many} examples and tutorials: # https://modelsummary.com library(modelsummary) # load data and estimate models utils::data(trees) models <- list() models[["Bivariate"]] <- lm(Girth ~ Height, data = trees) models[["Multivariate"]] <- lm(Girth ~ Height + Volume, data = trees) # simple table modelsummary(models) # statistic modelsummary(models, statistic = NULL) modelsummary(models, statistic = "p.value") modelsummary(models, statistic = "statistic") modelsummary(models, statistic = "conf.int", conf_level = 0.99) modelsummary(models, statistic = c( "t = {statistic}", "se = {std.error}", "conf.int")) # estimate modelsummary(models, statistic = NULL, estimate = "{estimate} [{conf.low}, {conf.high}]") modelsummary(models, estimate = c( "{estimate}{stars}", "{estimate} ({std.error})")) # vcov modelsummary(models, vcov = "robust") modelsummary(models, vcov = list("classical", "stata")) modelsummary(models, vcov = sandwich::vcovHC) modelsummary(models, vcov = list(stats::vcov, sandwich::vcovHC)) modelsummary(models, vcov = list( c("(Intercept)" = "", "Height" = "!"), c("(Intercept)" = "", "Height" = "!", "Volume" = "!!"))) # vcov with custom names modelsummary( models, vcov = list( "Stata Corp" = "stata", "Newey Lewis & the News" = "NeweyWest")) # fmt mod <- lm(mpg ~ hp + drat + qsec, data = mtcars) modelsummary(mod, fmt = 3) modelsummary(mod, fmt = fmt_significant(3)) modelsummary(mod, fmt = NULL) modelsummary(mod, fmt = fmt_decimal(4)) modelsummary(mod, fmt = fmt_sprintf("%.5f")) modelsummary(mod, fmt = fmt_statistic(estimate = 4, conf.int = 1), statistic = "conf.int") modelsummary(mod, fmt = fmt_term(hp = 4, drat = 1, default = 2)) m <- lm(mpg ~ I(hp * 1000) + drat, data = mtcars) f <- function(x) format(x, digits = 3, nsmall = 2, scientific = FALSE, trim = TRUE) modelsummary(m, fmt = f, gof_map = NA) # coef_rename modelsummary(models, coef_rename = c("Volume" = "Large", "Height" = "Tall")) modelsummary(models, coef_rename = toupper) modelsummary(models, coef_rename = coef_rename) # coef_rename = TRUE for variable labels datlab <- mtcars datlab$cyl <- factor(datlab$cyl) attr(datlab$hp, "label") <- "Horsepower" attr(datlab$cyl, "label") <- "Cylinders" modlab <- lm(mpg ~ hp * drat + cyl, data = datlab) modelsummary(modlab, coef_rename = TRUE) # coef_rename: unnamed vector of length equal to the number of terms in the final table m <- lm(hp ~ mpg + factor(cyl), data = mtcars) modelsummary(m, coef_omit = -(3:4), coef_rename = c("Cyl 6", "Cyl 8")) # coef_map modelsummary(models, coef_map = c("Volume" = "Large", "Height" = "Tall")) modelsummary(models, coef_map = c("Volume", "Height")) # coef_omit: omit the first and second coefficients modelsummary(models, coef_omit = 1:2) # coef_omit: omit coefficients matching one substring modelsummary(models, coef_omit = "ei", gof_omit = ".*") # coef_omit: omit a specific coefficient modelsummary(models, coef_omit = "^Volume$", gof_omit = ".*") # coef_omit: omit coefficients matching either one of two substring # modelsummary(models, coef_omit = "ei|rc", gof_omit = ".*") # coef_omit: keep coefficients starting with a substring (using a negative lookahead) # modelsummary(models, coef_omit = "^(?!Vol)", gof_omit = ".*") # coef_omit: keep coefficients matching a substring modelsummary(models, coef_omit = "^(?!.*ei|.*pt)", gof_omit = ".*") # shape: multinomial model library(nnet) multi <- multinom(factor(cyl) ~ mpg + hp, data = mtcars, trace = FALSE) # shape: term names and group ids in rows, models in columns modelsummary(multi, shape = response ~ model) # shape: term names and group ids in rows in a single column modelsummary(multi, shape = term:response ~ model) # shape: term names in rows and group ids in columns modelsummary(multi, shape = term ~ response:model) # shape = "rcollapse" panels <- list( "Panel A: MPG" = list( "A" = lm(mpg ~ hp, data = mtcars), "B" = lm(mpg ~ hp + factor(gear), data = mtcars)), "Panel B: Displacement" = list( "A" = lm(disp ~ hp, data = mtcars), "C" = lm(disp ~ hp + factor(gear), data = mtcars)) ) # shape = "cbind" modelsummary(panels, shape = "cbind") modelsummary( panels, shape = "rbind", gof_map = c("nobs", "r.squared")) # title modelsummary(models, title = "This is the title") # title with LaTeX label (for numbering and referencing) modelsummary(models, title = "This is the title \\label{tab:description}", escape = FALSE) # add_rows rows <- tibble::tribble( ~term, ~Bivariate, ~Multivariate, "Empty row", "-", "-", "Another empty row", "?", "?") attr(rows, "position") <- c(1, 3) modelsummary(models, add_rows = rows) # notes modelsummary(models, notes = list("A first note", "A second note")) # gof_map: tribble library(tibble) gm <- tribble( ~raw, ~clean, ~fmt, "r.squared", "R Squared", 5) modelsummary(models, gof_map = gm) # gof_map: list of lists f <- function(x) format(round(x, 3), big.mark = ",") gm <- list( list("raw" = "nobs", "clean" = "N", "fmt" = f), list("raw" = "AIC", "clean" = "aic", "fmt" = f)) modelsummary(models, gof_map = gm)
# The `modelsummary` website includes \emph{many} examples and tutorials: # https://modelsummary.com library(modelsummary) # load data and estimate models utils::data(trees) models <- list() models[["Bivariate"]] <- lm(Girth ~ Height, data = trees) models[["Multivariate"]] <- lm(Girth ~ Height + Volume, data = trees) # simple table modelsummary(models) # statistic modelsummary(models, statistic = NULL) modelsummary(models, statistic = "p.value") modelsummary(models, statistic = "statistic") modelsummary(models, statistic = "conf.int", conf_level = 0.99) modelsummary(models, statistic = c( "t = {statistic}", "se = {std.error}", "conf.int")) # estimate modelsummary(models, statistic = NULL, estimate = "{estimate} [{conf.low}, {conf.high}]") modelsummary(models, estimate = c( "{estimate}{stars}", "{estimate} ({std.error})")) # vcov modelsummary(models, vcov = "robust") modelsummary(models, vcov = list("classical", "stata")) modelsummary(models, vcov = sandwich::vcovHC) modelsummary(models, vcov = list(stats::vcov, sandwich::vcovHC)) modelsummary(models, vcov = list( c("(Intercept)" = "", "Height" = "!"), c("(Intercept)" = "", "Height" = "!", "Volume" = "!!"))) # vcov with custom names modelsummary( models, vcov = list( "Stata Corp" = "stata", "Newey Lewis & the News" = "NeweyWest")) # fmt mod <- lm(mpg ~ hp + drat + qsec, data = mtcars) modelsummary(mod, fmt = 3) modelsummary(mod, fmt = fmt_significant(3)) modelsummary(mod, fmt = NULL) modelsummary(mod, fmt = fmt_decimal(4)) modelsummary(mod, fmt = fmt_sprintf("%.5f")) modelsummary(mod, fmt = fmt_statistic(estimate = 4, conf.int = 1), statistic = "conf.int") modelsummary(mod, fmt = fmt_term(hp = 4, drat = 1, default = 2)) m <- lm(mpg ~ I(hp * 1000) + drat, data = mtcars) f <- function(x) format(x, digits = 3, nsmall = 2, scientific = FALSE, trim = TRUE) modelsummary(m, fmt = f, gof_map = NA) # coef_rename modelsummary(models, coef_rename = c("Volume" = "Large", "Height" = "Tall")) modelsummary(models, coef_rename = toupper) modelsummary(models, coef_rename = coef_rename) # coef_rename = TRUE for variable labels datlab <- mtcars datlab$cyl <- factor(datlab$cyl) attr(datlab$hp, "label") <- "Horsepower" attr(datlab$cyl, "label") <- "Cylinders" modlab <- lm(mpg ~ hp * drat + cyl, data = datlab) modelsummary(modlab, coef_rename = TRUE) # coef_rename: unnamed vector of length equal to the number of terms in the final table m <- lm(hp ~ mpg + factor(cyl), data = mtcars) modelsummary(m, coef_omit = -(3:4), coef_rename = c("Cyl 6", "Cyl 8")) # coef_map modelsummary(models, coef_map = c("Volume" = "Large", "Height" = "Tall")) modelsummary(models, coef_map = c("Volume", "Height")) # coef_omit: omit the first and second coefficients modelsummary(models, coef_omit = 1:2) # coef_omit: omit coefficients matching one substring modelsummary(models, coef_omit = "ei", gof_omit = ".*") # coef_omit: omit a specific coefficient modelsummary(models, coef_omit = "^Volume$", gof_omit = ".*") # coef_omit: omit coefficients matching either one of two substring # modelsummary(models, coef_omit = "ei|rc", gof_omit = ".*") # coef_omit: keep coefficients starting with a substring (using a negative lookahead) # modelsummary(models, coef_omit = "^(?!Vol)", gof_omit = ".*") # coef_omit: keep coefficients matching a substring modelsummary(models, coef_omit = "^(?!.*ei|.*pt)", gof_omit = ".*") # shape: multinomial model library(nnet) multi <- multinom(factor(cyl) ~ mpg + hp, data = mtcars, trace = FALSE) # shape: term names and group ids in rows, models in columns modelsummary(multi, shape = response ~ model) # shape: term names and group ids in rows in a single column modelsummary(multi, shape = term:response ~ model) # shape: term names in rows and group ids in columns modelsummary(multi, shape = term ~ response:model) # shape = "rcollapse" panels <- list( "Panel A: MPG" = list( "A" = lm(mpg ~ hp, data = mtcars), "B" = lm(mpg ~ hp + factor(gear), data = mtcars)), "Panel B: Displacement" = list( "A" = lm(disp ~ hp, data = mtcars), "C" = lm(disp ~ hp + factor(gear), data = mtcars)) ) # shape = "cbind" modelsummary(panels, shape = "cbind") modelsummary( panels, shape = "rbind", gof_map = c("nobs", "r.squared")) # title modelsummary(models, title = "This is the title") # title with LaTeX label (for numbering and referencing) modelsummary(models, title = "This is the title \\label{tab:description}", escape = FALSE) # add_rows rows <- tibble::tribble( ~term, ~Bivariate, ~Multivariate, "Empty row", "-", "-", "Another empty row", "?", "?") attr(rows, "position") <- c(1, 3) modelsummary(models, add_rows = rows) # notes modelsummary(models, notes = list("A first note", "A second note")) # gof_map: tribble library(tibble) gm <- tribble( ~raw, ~clean, ~fmt, "r.squared", "R Squared", 5) modelsummary(models, gof_map = gm) # gof_map: list of lists f <- function(x) format(round(x, 3), big.mark = ",") gm <- list( list("raw" = "nobs", "clean" = "N", "fmt" = f), list("raw" = "AIC", "clean" = "aic", "fmt" = f)) modelsummary(models, gof_map = gm)
modelsummary
and its dependenciesUpdate modelsummary
and its dependencies to the latest R-Universe or CRAN versions. The R session needs to be restarted after install.
update_modelsummary(source = "development")
update_modelsummary(source = "development")
source |
one of two strings: "development" or "cran" |